Translate

C++ Tutorial Classes and Objects

C++ Tutorial

C++ Classes and Objects
The main purpose of C++ programming is to add object orientation to the C programming language and classes are the central feature of C++ that supports object-oriented programming and are often called user-defined types.
A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.

C++ Class Definitions:

When you define a class, you define a blueprint for a data type. This doesn't actually define any data, but it does define what the class name means, that is, what an object of the class will consist of and what operations can be performed on such an object.
A class definition starts with the keyword class followed by the class name; and the class body, enclosed by a pair of curly braces. A class definition must be followed either by a semicolon or a list of declarations. For example, we defined the Box data type using the keyword class as follows:
class Box
{
   public:
      double length;   // Length of a box
      double breadth;  // Breadth of a box
      double height;   // Height of a box
};
The keyword public determines the access attributes of the members of the class that follow it. A public member can be accessed from outside the class anywhere within the scope of the class object. You can also specify the members of a class as private or protected which we will discuss in a sub-section.

Define C++ Objects:

A class provides the blueprints for objects, so basically an object is created from a class. We declare objects of a class with exactly the same sort of declaration that we declare variables of basic types. Following statements declare two objects of class Box:
Box Box1;          // Declare Box1 of type Box
Box Box2;          // Declare Box2 of type Box
Both of the objects Box1 and Box2 will have their own copy of data members.

Accessing the Data Members:

The public data members of objects of a class can be accessed using the direct member access operator (.). Let us try the following example to make the things clear:
#include <iostream>
 
using namespace std;
 
class Box
{
   public:
      double length;   // Length of a box
      double breadth;  // Breadth of a box
      double height;   // Height of a box
};
 
int main( )
{
   Box Box1;        // Declare Box1 of type Box
   Box Box2;        // Declare Box2 of type Box
   double volume = 0.0;     // Store the volume of a box here
 
   // box 1 specification
   Box1.height = 5.0; 
   Box1.length = 6.0; 
   Box1.breadth = 7.0;
 
   // box 2 specification
   Box2.height = 10.0;
   Box2.length = 12.0;
   Box2.breadth = 13.0;
   // volume of box 1
   volume = Box1.height * Box1.length * Box1.breadth;
   cout << "Volume of Box1 : " << volume <<endl;
 
   // volume of box 2
   volume = Box2.height * Box2.length * Box2.breadth;
   cout << "Volume of Box2 : " << volume <<endl;
   return 0;
}
When the above code is compiled and executed, it produces the following result:
Volume of Box1 : 210
Volume of Box2 : 1560
It is important to note that private and protected members can not be accessed directly using direct member access operator (.). We will learn how private and protected members can be accessed.

Classes & Objects in Detail:

So far, you have got very basic idea about C++ Classes and Objects. There are further interesting concepts related to C++ Classes and Objects which we will discuss in various sub-sections listed below:
Concept
Description
Class member functions
A member function of a class is a function that has its definition or its prototype within the class definition like any other variable.
Class access modifiers
A class member can be defined as public, private or protected. By default members would be assumed as private.
Constructor & destructor
A class constructor is a special function in a class that is called when a new object of the class is created. A destructor is also a special function which is called when created object is deleted.
C++ copy constructor
The copy constructor is a constructor which creates an object by initializing it with an object of the same class, which has been created previously.
C++ friend functions
A friend function is permitted full access to private and protected members of a class.
C++ inline functions
With an inline function, the compiler tries to expand the code in the body of the function in place of a call to the function.
The this pointer in C++
Every object has a special pointer this which points to the object itself.
Pointer to C++ classes
A pointer to a class is done exactly the same way a pointer to a structure is. In fact a class is really just a structure with functions in it.
Static members of a class
Both data members and function members of a class can be declared as static

 

C++ Tutorial Data Structures

C++ Tutorial

C++ Data Structures
C/C++ arrays allow you to define variables that combine several data items of the same kind but structure is another user defined data type which allows you to combine data items of different kinds.
Structures are used to represent a record, suppose you want to keep track of your books in a library. You might want to track the following attributes about each book:
  • Title
  • Author
  • Subject
  • Book ID

Defining a Structure:

To define a structure, you must use the struct statement. The struct statement defines a new data type, with more than one member, for your program. The format of the struct statement is this:
struct [structure tag]
{
   member definition;
   member definition;
   ...
   member definition;
} [one or more structure variables];  
The structure tag is optional and each member definition is a normal variable definition, such as int i; or float f; or any other valid variable definition. At the end of the structure's definition, before the final semicolon, you can specify one or more structure variables but it is optional. Here is the way you would declare the Book structure:
struct Books
{
   char  title[50];
   char  author[50];
   char  subject[100];
   int   book_id;
}book;  

Accessing Structure Members:

To access any member of a structure, we use the member access operator (.). The member access operator is coded as a period between the structure variable name and the structure member that we wish to access. You would use struct keyword to define variables of structure type. Following is the example to explain usage of structure:
#include <iostream>
#include <cstring>
 
using namespace std;
 
struct Books
{
   char  title[50];
   char  author[50];
   char  subject[100];
   int   book_id;
};
 
int main( )
{
   struct Books Book1;        // Declare Book1 of type Book
   struct Books Book2;        // Declare Book2 of type Book
 
   // book 1 specification
   strcpy( Book1.title, "Learn C++ Programming");
   strcpy( Book1.author, "Chand Miyan"); 
   strcpy( Book1.subject, "C++ Programming");
   Book1.book_id = 6495407;
 
   // book 2 specification
   strcpy( Book2.title, "Telecom Billing");
   strcpy( Book2.author, "Yakit Singha");
   strcpy( Book2.subject, "Telecom");
   Book2.book_id = 6495700;
 
   // Print Book1 info
   cout << "Book 1 title : " << Book1.title <<endl;
   cout << "Book 1 author : " << Book1.author <<endl;
   cout << "Book 1 subject : " << Book1.subject <<endl;
   cout << "Book 1 id : " << Book1.book_id <<endl;
 
   // Print Book2 info
   cout << "Book 2 title : " << Book2.title <<endl;
   cout << "Book 2 author : " << Book2.author <<endl;
   cout << "Book 2 subject : " << Book2.subject <<endl;
   cout << "Book 2 id : " << Book2.book_id <<endl;
 
   return 0;
}
When the above code is compiled and executed, it produces the following result:
Book 1 title : Learn C++ Programming
Book 1 author : Chand Miyan
Book 1 subject : C++ Programming
Book 1 id : 6495407
Book 2 title : Telecom Billing
Book 2 author : Yakit Singha
Book 2 subject : Telecom
Book 2 id : 6495700

Structures as Function Arguments:

You can pass a structure as a function argument in very similar way as you pass any other variable or pointer. You would access structure variables in the similar way as you have accessed in the above example:
#include <iostream>
#include <cstring>
 
using namespace std;
void printBook( struct Books book );
 
struct Books
{
   char  title[50];
   char  author[50];
   char  subject[100];
   int   book_id;
};
 
int main( )
{
   struct Books Book1;        // Declare Book1 of type Book
   struct Books Book2;        // Declare Book2 of type Book
 
   // book 1 specification
   strcpy( Book1.title, "Learn C++ Programming");
   strcpy( Book1.author, "Chand Miyan"); 
   strcpy( Book1.subject, "C++ Programming");
   Book1.book_id = 6495407;
 
   // book 2 specification
   strcpy( Book2.title, "Telecom Billing");
   strcpy( Book2.author, "Yakit Singha");
   strcpy( Book2.subject, "Telecom");
   Book2.book_id = 6495700;
 
   // Print Book1 info
   printBook( Book1 );
 
   // Print Book2 info
   printBook( Book2 );
 
   return 0;
}
void printBook( struct Books book )
{
   cout << "Book title : " << book.title <<endl;
   cout << "Book author : " << book.author <<endl;
   cout << "Book subject : " << book.subject <<endl;
   cout << "Book id : " << book.book_id <<endl;
}
When the above code is compiled and executed, it produces the following result:
Book title : Learn C++ Programming
Book author : Chand Miyan
Book subject : C++ Programming
Book id : 6495407
Book title : Telecom Billing
Book author : Yakit Singha
Book subject : Telecom
Book id : 6495700

Pointers to Structures:

You can define pointers to structures in very similar way as you define pointer to any other variable as follows:
struct Books *struct_pointer;
Now, you can store the address of a structure variable in the above defined pointer variable. To find the address of a structure variable, place the & operator before the structure's name as follows:
struct_pointer = &Book1;
To access the members of a structure using a pointer to that structure, you must use the -> operator as follows:
struct_pointer->title;
Let us re-write above example using structure pointer, hope this will be easy for you to understand the concept:
#include <iostream>
#include <cstring>
 
using namespace std;
void printBook( struct Books *book );
 
struct Books
{
   char  title[50];
   char  author[50];
   char  subject[100];
   int   book_id;
};
 
int main( )
{
   struct Books Book1;        // Declare Book1 of type Book
   struct Books Book2;        // Declare Book2 of type Book
 
   // Book 1 specification
   strcpy( Book1.title, "Learn C++ Programming");
   strcpy( Book1.author, "Chand Miyan"); 
   strcpy( Book1.subject, "C++ Programming");
   Book1.book_id = 6495407;
 
   // Book 2 specification
   strcpy( Book2.title, "Telecom Billing");
   strcpy( Book2.author, "Yakit Singha");
   strcpy( Book2.subject, "Telecom");
   Book2.book_id = 6495700;
 
   // Print Book1 info, passing address of structure
   printBook( &Book1 );
 
   // Print Book1 info, passing address of structure
   printBook( &Book2 );
 
   return 0;
}
// This function accept pointer to structure as parameter.
void printBook( struct Books *book )
{
   cout << "Book title : " << book->title <<endl;
   cout << "Book author : " << book->author <<endl;
   cout << "Book subject : " << book->subject <<endl;
   cout << "Book id : " << book->book_id <<endl;
}
When the above code is compiled and executed, it produces the following result:
Book title : Learn C++ Programming
Book author : Chand Miyan
Book subject : C++ Programming
Book id : 6495407
Book title : Telecom Billing
Book author : Yakit Singha
Book subject : Telecom
Book id : 6495700

The typedef Keyword

There is an easier way to define structs or you could "alias" types you create. For example:
typedef struct
{
   char  title[50];
   char  author[50];
   char  subject[100];
   int   book_id;
}Books;
Now, you can use Books directly to define variables of Books type without using struct keyword. Following is the example:
Books Book1, Book2;
You can use typedef keyword for non-structs as well as follows:
typedef long int *pint32;
 
pint32 x, y, z;
x, y and z are all pointers to long ints