Translate

C++ Tutorial Overloading (Operator and Function)

C++ Tutorial

C++ Overloading (Operator and Function)
C++ allows you to specify more than one definition for a function name or an operator in the same scope, which is called function overloading and operator overloading respectively.
An overloaded declaration is a declaration that had been declared with the same name as a previously declared declaration in the same scope, except that both declarations have different arguments and obviously different definition (implementation).
When you call an overloaded function or operator, the compiler determines the most appropriate definition to use by comparing the argument types you used to call the function or operator with the parameter types specified in the definitions. The process of selecting the most appropriate overloaded function or operator is called overload resolution.

Function overloading in C++:

You can have multiple definitions for the same function name in the same scope. The definition of the function must differ from each other by the types and/or the number of arguments in the argument list. You can not overload function declarations that differ only by return type.
Following is the example where same function print() is being used to print different data types:
#include <iostream>
using namespace std;
 
class printData 
{
   public:
      void print(int i) {
        cout << "Printing int: " << i << endl;
      }
 
      void print(double  f) {
        cout << "Printing float: " << f << endl;
      }
 
      void print(char* c) {
        cout << "Printing character: " << c << endl;
      }
};
 
int main(void)
{
   printData pd;
 
   // Call print to print integer
   pd.print(5);
   // Call print to print float
   pd.print(500.263);
   // Call print to print character
   pd.print("Hello C++");
 
   return 0;
}
When the above code is compiled and executed, it produces the following result:
Printing int: 5
Printing float: 500.263
Printing character: Hello C++

Operators overloading in C++:

You can redefine or overload most of the built-in operators available in C++. Thus a programmer can use operators with user-defined types as well.
Overloaded operators are functions with special names the keyword operator followed by the symbol for the operator being defined. Like any other function, an overloaded operator has a return type and a parameter list.
Box operator+(const Box&);
declares the addition operator that can be used to add two Box objects and returns final Box object. Most overloaded operators may be defined as ordinary non-member functions or as class member functions. In case we define above function as non-member function of a class then we would have to pass two arguments for each operand as follows:
Box operator+(const Box&, const Box&);
Following is the example to show the concept of operator over loading using a member function. Here an object is passed as an argument whose properties will be accessed using this object, the object which will call this operator can be accessed using this operator as explained below:
#include <iostream>
using namespace std;
 
class Box
{
   public:
 
      double getVolume(void)
      {
         return length * breadth * height;
      }
      void setLength( double len )
      {
          length = len;
      }
 
      void setBreadth( double bre )
      {
          breadth = bre;
      }
 
      void setHeight( double hei )
      {
          height = hei;
      }
      // Overload + operator to add two Box objects.
      Box operator+(const Box& b)
      {
         Box box;
         box.length = this->length + b.length;
         box.breadth = this->breadth + b.breadth;
         box.height = this->height + b.height;
         return box;
      }
   private:
      double length;      // Length of a box
      double breadth;     // Breadth of a box
      double height;      // Height of a box
};
// Main function for the program
int main( )
{
   Box Box1;                // Declare Box1 of type Box
   Box Box2;                // Declare Box2 of type Box
   Box Box3;                // Declare Box3 of type Box
   double volume = 0.0;     // Store the volume of a box here
 
   // box 1 specification
   Box1.setLength(6.0); 
   Box1.setBreadth(7.0); 
   Box1.setHeight(5.0);
 
   // box 2 specification
   Box2.setLength(12.0); 
   Box2.setBreadth(13.0); 
   Box2.setHeight(10.0);
 
   // volume of box 1
   volume = Box1.getVolume();
   cout << "Volume of Box1 : " << volume <<endl;
 
   // volume of box 2
   volume = Box2.getVolume();
   cout << "Volume of Box2 : " << volume <<endl;
 
   // Add two object as follows:
   Box3 = Box1 + Box2;
 
   // volume of box 3
   volume = Box3.getVolume();
   cout << "Volume of Box3 : " << volume <<endl;
 
   return 0;
}
When the above code is compiled and executed, it produces the following result:
Volume of Box1 : 210
Volume of Box2 : 1560
Volume of Box3 : 5400

Overloadable/Non-overloadableOperators:

Following is the list of operators which can be overloaded:
+
-
*
/
%
^
&
|
~
!
,
=
< 
> 
<=
>=
++
--
<< 
>> 
==
!=
&&
||
+=
-=
/=
%=
^=
&=
|=
*=
<<=
>>=
[]
()
->
->*
new
new []
delete
delete []
Following is the list of operators, which can not be overloaded:
::
.*
.
?:

Operator Overloading Examples:

Here are various operator overloading examples to help you in understanding the concept.
S.N.
Operators and Example
1
Unary operators overloading
2
Binary operators overloading
3
Relational operators overloading
4
Input/Output operators overloading
5
++ and -- operators overloading
6
Assignment operators overloading
7
Function call () operator overloading
8
Subscripting [] operator overloading
9
Class member access operator -> overloading

 

C++ Tutorial Inheritance

C++ Tutorial

C++ Inheritance
One of the most important concepts in object-oriented programming is that of inheritance. Inheritance allows us to define a class in terms of another class, which makes it easier to create and maintain an application. This also provides an opportunity to reuse the code functionality and fast implementation time.
When creating a class, instead of writing completely new data members and member functions, the programmer can designate that the new class should inherit the members of an existing class. This existing class is called the base class, and the new class is referred to as the derived class.
The idea of inheritance implements the is a relationship. For example, mammal IS-A animal, dog IS-A mammal hence dog IS-A animal as well and so on.

Base & Derived Classes:

A class can be derived from more than one classes, which means it can inherit data and functions from multiple base classes. To define a derived class, we use a class derivation list to specify the base class(es). A class derivation list names one or more base classes and has the form:
class derived-class: access-specifier base-class
Where access-specifier is one of public, protected, or private, and base-class is the name of a previously defined class. If the access-specifier is not used, then it is private by default.
Consider a base class Shape and its derived class Rectangle as follows:
#include <iostream>
 
using namespace std;
 
// Base class
class Shape 
{
   public:
      void setWidth(int w)
      {
         width = w;
      }
      void setHeight(int h)
      {
         height = h;
      }
   protected:
      int width;
      int height;
};
 
// Derived class
class Rectangle: public Shape
{
   public:
      int getArea()
      { 
         return (width * height); 
      }
};
 
int main(void)
{
   Rectangle Rect;
 
   Rect.setWidth(5);
   Rect.setHeight(7);
 
   // Print the area of the object.
   cout << "Total area: " << Rect.getArea() << endl;
 
   return 0;
}
When the above code is compiled and executed, it produces the following result:
Total area: 35

Access Control and Inheritance:

A derived class can access all the non-private members of its base class. Thus base-class members that should not be accessible to the member functions of derived classes should be declared private in the base class.
We can summarize the different access types according to who can access them in the following way:
Access
public
protected
private
Same class
yes
yes
yes
Derived classes
yes
yes
no
Outside classes
yes
no
no
A derived class inherits all base class methods with the following exceptions:
·        Constructors, destructors and copy constructors of the base class.
·        Overloaded operators of the base class.
·        The friend functions of the base class.

Type of Inheritance:

When deriving a class from a base class, the base class may be inherited through public, protected or private inheritance. The type of inheritance is specified by the access-specifier as explained above.
We hardly use protected or private inheritance, but public inheritance is commonly used. While using different type of inheritance, following rules are applied:
·        Public Inheritance: When deriving a class from a public base class, publicmembers of the base class become public members of the derived class andprotected members of the base class become protected members of the derived class. A base class's private members are never accessible directly from a derived class, but can be accessed through calls to the public and protected members of the base class.
·        Protected Inheritance: When deriving from a protected base class, public andprotected members of the base class become protected members of the derived class.
·        Private Inheritance: When deriving from a private base class, public andprotected members of the base class become private members of the derived class.

Multiple Inheritances:

A C++ class can inherit members from more than one class and here is the extended syntax:
class derived-class: access baseA, access baseB....
Where access is one of public, protected, or private and would be given for every base class and they will be separated by comma as shown above. Let us try the following example:
#include <iostream>
 
using namespace std;
 
// Base class Shape
class Shape 
{
   public:
      void setWidth(int w)
      {
         width = w;
      }
      void setHeight(int h)
      {
         height = h;
      }
   protected:
      int width;
      int height;
};
 
// Base class PaintCost
class PaintCost 
{
   public:
      int getCost(int area)
      {
         return area * 70;
      }
};
 
// Derived class
class Rectangle: public Shape, public PaintCost
{
   public:
      int getArea()
      { 
         return (width * height); 
      }
};
 
int main(void)
{
   Rectangle Rect;
   int area;
 
   Rect.setWidth(5);
   Rect.setHeight(7);
 
   area = Rect.getArea();
   
   // Print the area of the object.
   cout << "Total area: " << Rect.getArea() << endl;
 
   // Print the total cost of painting
   cout << "Total paint cost: $" << Rect.getCost(area) << endl;
 
   return 0;
}
When the above code is compiled and executed, it produces the following result:
Total area: 35
Total paint cost: $2450